Flame Retardants: Design for Environment and End-of-Life - is there a life after WEEE, RoHS and REACH?

Dr. Adrian Beard ©

Clariant GmbH – PA Marketing Specialties Industries, Industriestrasse Geb. 2703, D-50354 Hurth-Knapsack, Germany; adrian.beard @ clariant.com

Author Biographical Note

Adrian Beard works for Clariant Corporation, Hurth near Cologne in Germany, where he is in charge of industrial relations and regulatory affairs for phosphorus based flame retardants in the division Pigments and Additives. Since 2001, he also is vicepresident of the European Flame Retardants Association (EFRA), a sector group of the European Chemical Industry Council (Cefic), Brussels, Belgium. In addition, he gives lectures on fire safety at the University of Wuppertal, Germany. From 1991 to 1999, before joining Clariant, he was head of the environmental analytical laboratory at the Fraunhofer-Institute for Environmental, Safety, and Energy Technology in Oberhausen, Germany.

Abstract

Flame retardants are a key element of the safety of many products of daily life and in the workplace environment. Many plastics, textiles and natural materials are guite flammable and burn well. In a number of application areas this fire risk has to be reduced by measures like the use of flame retardants - the E&E sector being one of the most prominent areas. However, there are concerns about the environmental and health properties of some flame retardants, in particular brominated systems. The European WEEE and RoHS directives have responded to these concerns and declared the phase out of PBBs (polybrominated biphenyls) and PBDEs (polybrominated diphenylethers) as well demanding the separation of plastics containing brominated flame retardants before further recycling operations. In expectance of these directives and the growing pressure on halogenated flame retardants, the flame retardants market has responded with an increasing demand for non-halogenated flame retardants. Phosphorus and nitrogen based as well as mineral flame retardants have experienced above average growth rates over the last years. Material recycling of flame retarded plastics is usually technically feasible - the major problem is how to obtain a continuous supply of input material which is well defined in its composition. Otherwise, only feedstock recycling or energy recovery are sensible options.

A way to assess the environmental profile of flame retardants is to examine the release of the flame retardant and its degradation products over key stages of the life cycle of plastics like the processing by extrusion, the use phase, accidental fires, incineration and end-of-life disposal. These tests were carried out with a new class of phosphinate based flame retardants and compared to currently used brominated systems in polyamide (PA) 6, polyamide 6.6, high temperature nylon (HTN) and polybutylene terephthalate (PBT). The methodology presented can be applied to other flame retardants and plastics additives in order to evaluate the environmental profile of these products, especially within the context of upcoming European chemicals regulations (REACH).

For further information see:

www.flameretardants-online.com www.flameretardants-online.com/news/frame_news_downloads.htm www.exolit.com www.cefic-efra.com

Substance	*** * * * _{* *} *	Rapporteur	Priority List no. (year)	Status
Antimony trioxide	ATO	Sweden	4 (2000)	Under way
Short-chain Chlorinated Paraffins	SCCP	UK	1 (1994)	Published
Medium-chain Chlorinated Paraffins	MCCP	UK	3 (1997)	Draft circulate
Pentabromodiphenyl ether	PBDE	UK	2 (1995)	Published
Octabromodiphenyl ether	OBDE	UK/France	1 (1994)	Published
Decabromodiphenyl ether	DBDE	UK/France	1 (1994)	Published
Hexabromocyclododecane	HBCD	Sweden	2 (1995)	Draft circulate
Tris(2-chloroethyl) phosphate	TCEP	Germany	2 (1995)	Draft circulate
Tetrabromobisphenol A	TBBPA	UK	4 (2000)	Under way
Tris(2-chloroisopropyl) phosphate	TCPP	Eire/UK	4 (2000)	Under way
Tris(1,3-dichloroisopropyl)phosphate	TDCPP	Eire/UK	4 (2000)	Under way
2,2-bis(chloromethyl)trimethylene bis(bis(2-chloroethyl)phosphate)	V6	Eire/UK	4 (2000)	Under way

Mechanical Recyc	cling PA		Clariant
◆ UL 94 Performance	at 0.8 mm		
	PA 66 GF	OP 1312	brom. PS
1 st pass	n.c.	V-0	V-2
3 rd pass	n.c.	V-0	V-2
6 th pass	n.c.	V-0	V-2
◆ Total afterburning tin	ne	14	43
⊢ 1st pa	ass 3rd	pass 6th	pass 20

Process-installation	Definition: Energy Recovery/material recycling or disposal	Cost Euro/ ton	Issues
Mechanical recycling	Material recycling	?	Sorting, quality, economic end market
Feedstock recycling (FS)	Material recycling /Energy Rec	150-400	Economics, reliability new technique
FS: Dehalogenation	Material recycling	?	Economics, new techniqu
FS: Haloclean	Material recycling	?	Pilot scale
Solvolyse process	Material recycling	High	
Super Critical Water Oxidation	Material recycling	High	Economics, pilot scale
Metal smelter	Energy recovery with material recycling (metals)	Low?	Definition of energy recovery/ type of smelter
Cement kiln-fuel replacement	Energy recovery or after EU hearing material recycling as option	Low?	Corrosion / energy recove
Plastics with BFR's as additive	Energy recovery or after EU hearing material recycling as option	Low?	Definition of energy recovery?
House hold waste incinerators co-combustion	Energy recovery	50-130	Political acceptance, max 3% WEEE plastics
Landfill	Disposal	50-130	Politically not accepted

